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STEREO-VIDEO DATA REDUCTION OF WAKE VORTICES AND

TRAILING AIRCRAFTS

Rachel Alter-Gartenberg

(lomputer Sciences (lorporation, 3217 N. Armistead Ave., ttampton, VA 23666.

Abstract

This report presents stereo image theory and lhe corresponding image processing soft.ware developed

to analyze stere() imaging data acquired for tile wake-vorlex hazard flight experilnent conducled at NASA

Langley Research ('.enter. ill this experiment, a lea(ling l,o<:kheed ('.-130 was equipped with wing-ti 1)

smokers to visualize its wing vortices, while a trailing Boeing 737 flew into the wak(' vortices of the

leading airplane. A Rockwell OV-10A airplane, titled with video cameras under its wings, flew at 400

t.o 1000 Det abow_ and parallel to the wakes, and photographed the wake inlercel)tion process for the

[)urpose of determining the three-dimensional location of the trailing aircraft relative to the wake. The

report establishes the image-processing tools developed to analyze the video flight-tes! data, identifies

sources of [)otentia[ inaccuracies, and assesses the qualily of the resultant set. of stereo data redu('lion.

1 INTRODUCTION

Knowledge of wake-vortex effecls on trailing airplanes is ne<:essary for high volume air-traffic control,

terminal area productivity, and the prevention of flight accidents. The \:ehicle Performance Branch of

the Flight Dynamics an<l Coiitrol Division at. NASA Langley Research (_ent.er conducted a series of flight

experiments in which a trailing Boeing 737 flew into the wake of a leading C-la0 whose wing-tip vortices

were visualized by smoke emission. An OV-10A airplane, wilh two cameras mounted under its wings,

flew at 400 1000 feel. above the trailing airl)lane, and photographed its interaction with the wake-vortices.

Imaging of the same event from two different locations enables the extraction of deplh information and

objec! location in space (3D) through stereo techniques. In the context of the image processing tools and

the data reducti<)n techni<lues, "trailing" and "intercepting" refer to the same airplane, which trails the

leading wake-generating airplane, and flies into its wakes.
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Figure 1: Geometrical model of pinhole camera.

Computer Sciences Corporation (CSC) has developed a PV-Wave based image processing software

package that extracts 3D information from stereo video images for the purpose of determining the three-

dimensional location of the trailing aircraft relative to the wake. This ('_ontractor Report (CR) describes

tile software package, including tile mathematical and image processing tools. Section 2 sets tile theory

of image formation in general and the geometry of stereo imaging in particular. Section 3 describes the

experimental set-up. Section 4 discusses the software package developed at CSC, while Section 5 describes

the data reduction process and analyzes the results.

2 THE THEORY OF STEREO IMAGING

2.1 Image Formation

An image is formed by projecting a set of 3D object points into a 2D image plane in a perspective mapping

[1] [4]. The transformation can be carried out by the eye, camera, video recorder, or any other imaging

device. Figure 1 illustrates a simple "pinhole camera" model, where the image plane is located at the focal

point f of the lens. According to this model, rays of light pa.ss through the (;enter of the lens, and the
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Figure 2: The 4-by-:l homogeneous transformation matrix. (Fronl [2], p. -lt_l)

image of ttle objec! is formed oil all image-plane at, a, distance f. The image plane in Fig. l(a) is place<l

})ehind tile focal [)oinl (the point of projeclion), and the image<l-object is inverted, ll is therefl)re more

convenient and intuitive to place the focal point I>ehind the image plane, and get tile in,aged ot)ject erect.,

as illustrated in Fig. l(b). In the former arrangement, the focal point is a! z : 0, and the image plane is

at +f on the z-axis, while in the latter set-up, l he focal point is at +f on the z-axis, and the image plane

is at, z : 0.

This transik)rmatioll is a projective-perspective mapping, since its dimensions retain similarity to the

original ot)jecl (perspective), and tile dimensionality is reduced from 3 to 2 (projection). Using homoge-

neous coordinates and a 4-by-4 matrix formulation (Fig. 2) to unify, the representation and calculation of

geometrical transformations [2], tile, perst>ective transformation of an object point t', = (x,,, y,, z,, 1) into

the image point I>i : (xi, !li, z,:, w,:) is performed t)y the following homogeneous transformation:

y_ () 0 0 y. fYo

zi 0 f 0 zo fz,,

wi 0 0 1 f 1 z,, +.f

where w is an art)itrary constant, and tile, viewt>oint is at +f along the z-axis.

(1)

The same homogeneous
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transformation for a viewpoint at -f along the z-axis is given by

{ll ooollx)(:xoIYi = O f -f 0 0 Yo = -fYo

zi 0 0 -f 0 Zo -fzo

wi 0 0 1 - f 1 zo - f

Returning t,o physical coordinates, we divide by the fourth component, and get

IP_ = y_ = :yo/(zo + f) ,

zi fZo/(Zo + f)

and

(2)

xi (fxo/(f-Zo) )
Yi = fYo/(f - zo) ,

zi f zo/(f - zo)

The first and second components can be derived using similarfor the +f and -f cases, respectively•

triangles, while the third component is a parameter proportional to the distance along the projecting ray

from the center of the lens to the center of the object point [1], as illustrated in Fig. 3.

Knowledge of the camera's focal length, the photograph scale, and the object's l)osition in the image

plane, allows a 3I) reconstruction of the object via an inverse perspective, assuming that the line of sight



intersects the physical plane a.t only one point ([2], Al>l>en<lix 1). This apl>roach has been successfully

applied t.o depth extraction from irna.ges obtained from a similar set of fli_;ht lests. In their data reduction,

Childers and Snow [5] assumed that the trailing airplane and wake vortices of lhe forward airplane are at

the same altitude. Therefore, the distance from the trailing; airplane t.o the wake vortices was extracted

directly from the image, and the calibration factor was set. a.s the ratio between the imaged and actual

wing-span of t,he trailing airplane. When this is not the case, then using stereo ima;e;ing to extract depth

information from two syuchronized images of the same objecl, is a. more accurate approach.

2.2 Stereo Imaging

2.2.1 Binocular Vision

Tire positionitlg of the human eye enables the acquisition of a similar scene from two nearby points at the

same horizontal level [4]. Objects separated by <tepth will <lifter in their positioning in the images formed

by each eye. Disparity (location <lifterence) creates the sensation of depth, tluman disparity is mea.sured

in minutes of arc, where one minute of disparity corresponds roughly t.o a difference of 2.5cm for a.n object

2.5m away. A person with normal eyesight senses the strongest stereo fusion at an approximale distance

of 50 cm in fronl of the eye [l]. For eyes separated by d = 5 cm, the stereo angle is 5.72 ° .

It. is therefore inferred tha! for a. strong stereo sensation, the ratio of d/f = 1/10 must be maintained

while creating stereo pairs from a single view of tire object with a scaled separal, ion d between the viewer's

eyes and a focal length f. Such a process entails a horizontal translation of d/2 = +.f/20 for" tire left. and

right images respectively, followed by their appropriate perspective projection transformations, a.s given i>y

the homogeneous transformation matrices

000) /1000)0 1 0 0 0 l 0 0
L = t_ = . (3)

0 0 1 -1/f 0 0 1 -1/f

f/20 0 0 1 -f/20 0 0 1

The resulting shifted representations, when viewed through a stereoscot>e, are blended into a single 3D

view of the scene, as it. would appear to the eye.
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Figure 4: Binocular imaging system.

2.2.2 Parallel Stereo Mapping

The accuracy of depth extraction from stereo pairs depends on a proper time and spatial synchronization

of the stereo images. Therefore, the process is most useful for tile extraction of tile 3D positioning of a

limited and well defined set of object points. Tile stereo data reduction scheme employed for tile wake-

vortex experiment is ba.sed oil the matching of the trailing airplane's nose, tail and wing-tips, and their

corresponding nearest wake vortices locations (i.e., Figures 5 and 6 top, and Figure 9).

Figure 4 illustrates the basic binocular geometry, assuming that the two camera.s are aimed in parallel

in the z-direction. Using the previous analysis, depth can be extracted using the disparity information

alone. For this procedure we assume that Pt and P,. are the projections of a point P on the left. and right

images respectively. The images are acquired by two cameras with the same focal length f, located at a

distance d apart on the xy-plane with no disparity in the z-direction. Usiug a different coordinate system

for each camera, centered on tile respective focal point, the point P is represented by (xl, Yl, zt) in the

left-camera coordinate system and by (x,., y,., z,.) in the right-camera coordinate system, where

xt - x_ = d_, yl - y,. = dy, zt = z,.. (4)

Tile coordinates of the object point P in space are (Xo, yo, Zo), and the coordinates of Pt and P,. on the left



and right image-planes are (xil, yit) and (xi_, gi,.) respectively. Assuming tire geonmtry of Fig. 3(b), P lies

oil the line
•ril(zl- f)

x t -- f

in the left camera system, and Oil the line

.ri,.(z,. - f)
3_ r

f

v.(--t - f)

!It- f

!Jir(2r - f)

g"- f

ill tire right camera system. Translating the right-camera line to the left. camera coordinate system, we vet.

:ri,.(zr - f) .qi,.(2,, - f)
:rt = d_, , _.ll= d,

f f

fronl which we can extract the depth

zt=f 1+ -- =f 1+ --
Xir -- Xil Yir -- Yil

of the i)oinl P from the left camera, assuming no disparity in the z-direction. Generally, depl h information

Call be extra<:ted from disparity along either the x-axis or tile y-axis. Therefore, the set of zi,., xa, d,. and

f are sufficient to extract zt or z,.. Likewise, :rt an<l !ll can be extracted by

xt = -Axil, Yl = -AYi_, (6)

where A = (zl- f)/f.

2.2.3 Compensation for Non-Parallel Imaging

When tile two cameras do llOt aim in parallel along the z-direction, t>ul converge at an angle 0, then

this angle must also be accounted for in the extraction of tire depth information. Assuming no disparity

in the z-direction, tile coordinate system relative to the left. camera is set such that the camera aim is

parallel in the z-direction. The right camera is then rotated by an angle 0 in the z-direction measured

positive in the counterclockwise direction. As before, tire two cameras have the same focal length f an¢t are

translated relative 1o each other by d_, and d._ in the .r- and 9-directions, respectively. The image formation

transformation given in Eq. 1 changes for tire right <'amera as follows:

"1:it

Yir

2ir

Wit

fcos0 -fcos0 0 f(dusin0-d_,cos0)

fsinO fcos0 0 -f(d:,sinO+ducosO)

o o f o

0 0 1 f

X o

Yo

1

(7)



fxocosO - fYo sin 0 + f(d vsin 0 - d_.cosO)

fYo sin 0 + fYo cos 0 - f(d: sin 0 + d u cos O)

fzo

(zo + f)

Returning to physical coordinates, we divide by the fourth component, and get

t_=
Xir

Yir

Zir

f(Xo cos0 - yo sin 0 - d_.cos0 + dy sin O)/(zo + f)

f(yosinO+ y,,cosO-d_.sinO-dycosO)/(Zo + f) ) ,f zo/(zo + f)

where the new coordinates (xi,., yi,., zi,.) should be substituted in Eqs. 5 and 6.

3 EXPERIMENTAL SET-UP

The experimental set-up and pre-test procedures are detailed in [6, 7]. Generally speaking, the leading C-

130 was equipl)ed with wing-tip smokers to visualize its vortex cores. A photographing OV-10A airplane,

with cameras mounted under its wings, flew at approximately 500 to 1000 feel. above and parallel to

the two wakes. The OV-10A airplane surveyed the trailing Boeing 737 intercepting the leading C-130's

wake vortices, with two miniature (lipstick-size) Elmo VtlS video cameras mounted vertically through

"peel>holes" on the bottom of the wingtip fairings (see Figs. 6 and 9 in Ref. [7])

3.1 Analysis

The assumption of parallel downward viewing of the cameras holds true only on the ground. Airplane

deflection caused by the aerodynamic load, and the subsequent rotation angle of the image planes during

flight, disputes this assumption, and should be taken into account as a source of inaccuracy. The stereo

process a:ssumes a wing deflection of about 10 ° for the trailing Boeing 737 and about 2 ° for the OV-10A.

Preliminary studies [6] indicate that at 12,000 feet, the stereo effects were minimal, i.e., Earth images

at 12,000 feet from both cameras were identical, with disparity (parallax) smaller than a pixel. However,

the current analysis shows that the theoretical disparity at 12,000 feet is about 2 pixels, and the stereo pair

becomes identical only at about 48,000 feet. For objects that are 500 to 1000 feet away from the cameras,

as is the case with this data reduction process, the disparity is I)etween 50 to 26 pixels respectively.

8



Accurate stereo reduction is conthlgent upon zero z-direction disparity belween the two image-planes

as given by tile conditions ol, z, and z,. in Eq. 4. In this experimental set-up, data reduction is made relative

to the OX:-10's left image plane. Roll angles cause the image plane depth location to shift. Furt.hermore,

changes in tile roll-angle o1' pitch-attitude shift the field-of-view. Data reduction of flight 55g experiment

showed, for example, roll angles that ranged between -1.11 ° and 6.3 ° . No adjustment relative to a. fixed

inertial coordinate system has been made, and at presenl, the sl.ereo data reduction software does not

compensate for non-parallel stereo imaging.

3.2 Data Recording

.,\ time code, a<'curale within one millisecond, was superimposed on each of the "left" and "righl" video

cassette recording. For each fligh1-1esl., the relevanl 'time windows of interest" for analysis were deter-

nlhled. Tliese sequences were digitized using lile Video |nlage Processing _qysleln (VIPS) at. Langley's

l)a.ta Visualization and Aniniation Laboratory (I)X:AL). Tile VIPS is a hardware/software combhiai, ion

built around the l)ata.(:ul)e hlc.'s MaxVideo 200 modular image processing sul>systeni, interfaced to a

Motorola MVME 167-33MB conlputer. Tile real-thne digital disk is capable of storing up t.o 19 minutes of

full-frame digitized S-bil hnages. Tile software interface is the ImageFlow hnage Processing software from

Dala.(hlbe Inc., running under LynxeS. The colored video information was digitized by' a.n S-bil black and

white iX�i) converter, using the green channel. The gain and offset were adjusted so thai on one hand the

recorded image had a good signal-lo-noise ratio, and on the other hand, lhe digitized image was neither

saturated nor under ext)osed.

Accurate stereo reduction depends largely on accurate time-synchroniza.t.ion of the stereo pairs. Every

effort has been made to synchronize the right and left video frames, by finding the transitional fl'ame of

tile required time-window on both the lefl and right sequences of the digitized data. Pairs of synchronized

frames (time-wise) were saved with a t.ime resolution of .1/15 of a second (every eighth frame).

3.3 Calibration

The cameras mounted on the wing-tips of tile OV-10A airplane were calibrated at Langley in terms of the

can,eras' I)arameters and geometrical distortion, using analytical photograinmetric techniques [5]. For each

camera, these parameters were incorporated into two 4-by-4 transformation matrices which account for

t.he camera distort.ion and allow polynomial warping of each frame prior to processing. Eml)irical evidence

showed thal. images acquired by the left camera are rotated by aboul O = :2° clockwise relat.iw' to the



right camera. The rotation was probably caused by the span-wise wing deflection under aerodynamic load.

Although the actual deflection and wing-tip rotation were never measured or" calculated, the rotation was

estimated to be around 20-3 °, in agreemeut with the experimental observation. Therefore, the left frame

was rotated 1° clockwise, and the right frame was rotated 1° counterclockwise, so that the resulting image

planes aim in parallel along the z-direction.

Photogrammetric calculations determined tile cameras' nominal focal length to be f = 0.0245 feet

(S.5mm), and set. tile feet/pixel ratio t.o F = 4.095E- 5. Tile distance between the cameras on the ground

was measured as d,r = 39.06 feet and dy = 0 feet. This distance was adjusted to 39.06 cos(a °) = 39.00 feet

to account for in-flight deflection. The substitution of these values in Eq..5 shows a theoretical disparity

of about two and a half pixels for stereo frames acquired at a distance of 10,000 feet, about two pixels at

a distance of 20,000 feet, and less than half a pixel at. images acquired at a distance of 4S,000 feet.

4 THE SOFTWARE PACKAGE

4.1 Image Processing Tools

The data reduction software is based on Visual Numerics' PV-Wave 6.10 software package, and can be run

on any platform that has access to a PV-Wave license. The following Image Processing (IP) tools were

used in this process:

Pre-processing

Image warping using the photogrammetric parameters of the cameras, followed by -1 ° and 1° rota-

tions for tile left. and right frames to compensate for the image-plane in-flight rotation, precedes the

data reduction process. When the Geosynchronous Positioning System (GPS) data is available, the

software extracts the altitudes of both the photographing OV-10A and tile trailing Boeing 737, and

calculates their relative distance. Additionally, when the orientation files are available, tile software

extracts the pitch, roll and true-heading angles of the OV-10 and the trailing Boeing 737 at. the video

time.

Background and object statistical analysis

Background statistics are obtained by averaging a large background portion of each frame. The time

code bar is masked with the statistical background level, to avoid false detection near the bar. The

threshold intensity for objects of interest, such as the trailing airplane and the wakes, is set as a

10



trade-offbetweenthe backgroundstatistics,thestrengthof the waterreflectionsignal,tilt, difference
in illumination betweenthe left.and right images,and the objects' intensity. For the flight 55S

<lat;_reductionprocess,the objecl thresholdrangedbetween130and 150for the left frame,and
between100and 150for the right frame. For flight..559,wherethe airplanewasI>righterthan the
wakes,thresholdsweresetbetween7.5and110for !hewakesandbetween90and140for"theairplane,

dependingon thetimesequence.Forflight560,thesevaluesrangedbetween120-160for theairplane,
and 110-160for the wakes.In general,asa result of the Sunangleandorientation relativeto the

imageplanesduring imageacquisition,left fi'ameswerebrighter than right framesin all of these

experiments.

• Noise reduction

The experiments were carried out over the Atlan!ic Ocean. Therefore, some stereo frames conlain

sul)stantial water-reflection signal that is wide enough to be detected as a wake signal, and brighl

enough to be detected as an airplane signal. A threshold operator, which sets all irua_e elements

with intensity below a pre-set object intensity to the calculated constant background level, reduces

background noise, minimizes the detection of water reflection as wake image elements, and increases

the image signal-to-noise ratio.

• Image filtering

This analysis re<luires only the silhouette of the objects, not their inner details. Therefore, the

nonlinear median tilter, known for its ability to preserve sharl> transitions and remove "salt and

pept>er'" noise, was chosen to filter the airplane image from the wakes and water reflection signal in

each frame. Effectively, this filtering separates each thresholded image frame into two images, one

tha! contains only wake elements, and the other that contains only the trailing airplane image. The

airplane image is extracted from the !hresholded frame by using the median filter with a wi<tth of

11-17 pixels, which is about 3 times wider than !he image of the wake, but. still small relaiive 1,o

the airplane's width. Similarly, the wake image is extracted from the original frame by masking the

airplane image from the median-filtered image, and filtering the result with a median filter, using the

wake's width as a parameter.

Figure 5 illustrates an example of the image filtering process, executed on flight-test 5.5S, conducted

in the 332rd day of 1995, at. 15:1S:4,] hour (GMT). This pair illustrates data reduction for high

signal-to-noise ratio, where the threshold for the signal (airplane and wakes) was set !o 140 and

130, for the left. and right frames respectively, while the background threshold level was estimated

at ¢i5, and the median width was set to 11 pixels. The first row illustrates the original slereo pair.

11



Original image
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Wake elements

(a) Left (b) Right

Figure 5: Separation of tile trailin_ airplane image from the image of the wakes for higtl signal-to-noise

ratio
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Original image

Trailing aircraft silhouette

Wake elements

(a) Left (b) Right

Figure 6: Separat, ion of tile trailing airplane image fronl the image of tile wakes for low signal-to-noise ratio
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Original image

Trailing aircraft silhouette

Wake elements

(a) Left (b) Right

Figure 7: Separation of the trailing airplane image from the image of tile wakes for unlocalized wake and

a median of width 11.
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Original image

Trailing aircraft silhouette

Wake elements

(a) Left (b) Right

F'igure S: Sepa, ral,ion of t,he trailing a,irt>laI_e image from t,he image of the wakes for unlocalized wake and

a median of widt, h 17.
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Tile secondandthird rowsillustrate the extractedand filtered trailing airplanesilhouette,and ttle

wakeelementsrespectively.Figure6 demonstratesseparationfor a low signal-to-noiseratio case,

causedby extensivewater reflectionnoise. Data reductionwasconductedon the sameflight test,
at 15:40:12hours. The thresholdfor tile backgroundwasdeterminedas66,and the thresholdfor

the signalwasset to 100for both the left and right frames. This low thresholdwasnecessaryto
retain the wakeinformation. Higherthresholdswashout the wakeinformation. However',this set

hasa strongsignalof water reflectionresidualsthat areas wideand bright astile wakes.Figs. 7
and8 illustratea caseof unlocalizedand weakwakesignal,whenthe right wakebeginsto dissipate,
startingaround15:23:26hours.Thresholdfor the airplaneimagewassetto 140and 120,for the left
and right framesrespectively,whilethe backgroundthresholdlevelwasestimatedat 64. When the

width of the medianfilter wasset, as before,to 11pixels,the processwasunableto separatethe
trailing airplanefrom the wake(Fig. 7). However,whenthe width of the medianfilter"wasset.to 17

pixelsto accountfor theright wakecharacteristics,thetwoobjectswereproperlyseparated(Fig. 8).
A widermediancausesinaccuratetip localization,asthe detectedtip is localizedtoo muchinto the

wing,and is not closeenoughto the true edge.

Theseexamplesshowthat a completeseparationof the airplaneimagefrom the wakesignal is
not alwaysattainable. As a result, tip locationextraction is proneto falsedetection,when tile

processmistakeswakeelementsasairplaneelements.Methodsthat reducethe probabilityof false
or"inaccuratedetectionaredetailed in Section4.2. Figure 9 illustratesthe final detectedtips

superimposedon theoriginalstereopair'silluslrated in Figs.5 and6 respectively.This figureclearly
demonstratestile robustnessof the data reductionprocessto falsedetection.

4.2 Wake Extraction

Wakeinformationis extractedat the centerof the imageplane,andat the image-planey-location of each

extracted airplane's tip. Wake locations are extracted from tile wake-frames pair by finding the "center-

of-mass" of the two wakes on both frames. A strong water reflection signal might result in a strong and

false wake candidate. When more than two equally strong wake candidates are detected, the first two

maximum strength centers are chosen as the x wake location at the y-location of interest. This detection

is later" checked against previously detected wake locations, using a referenced wake location list. When a

wake is covered by or too close to the airplane, it is typically filtered out of the wake image, as illustrated

by the third row in Fig. 6. The process can then extract only one wake location and uses a referenced list

16



(a) Left (b) Right

Figure 9: Final data reduction for tile stereo pairs illustrated in Figs. 5 and 6.
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of previously extracted wake information to estimate tile missing wake location, as illustrated in tile final

extraction result, shown in the second row of Fig. 9. Wake information extracted close to the airplane's

tip allows the assessment of both the distance between tile extracted tip and the wake, and the influence

of the trailing plane on the wake's behavior. Final tip detection is illustrated by the "+" sign in Fig. 9.

Additionally, the wake extraction process includes the extraction of the wake orientation along the

image plane relative to the sampling lattice. By extracting the wake location at the top, center, and

bottom of tile captured frame, the orientation of the wake is calculated as the wake's slope. Figure 10

illustrates stereo pairs with wakes orientation that is not parallel to the image frame. The sequence of the

wake x-location relative to the left camera is further assessed for the general behavior of the wake a.s a

function of time, as illustrated in Fig. 11.

The referenced wake location list summarized the four wake locations, from the left and right wakes in

the left and right frames, respectively. The list is initiated by extracting the wake information as close as

possible to the center of the image plane, either before the trailing airplane's nose, or after its tail. The

process is performed as the first data reduction operation for all the separated wake frames, even when the

trailing airplane does not appear in the stereo pair. The preliminary wake extraction process ensures the

extraction of at least one accurate pair of wake locations from each frame. This location is saved on the

referenced list, and is later updated to wake locations closer to the tip-search sub-images. For example,

after extracting the nose-tip, the reference wake list is updated to a location in front of the airplane, just

before the nose. Likewise, after the tail-tip search, the referenced wakes are updated at a location just. after

the tail location. The update process insures a more accurate location extraction in cases where the wake

is close to tile trailing airplane, is completely covered by it, or when the wake x-location within the frame

changes rapidly. The right wing-tip smoker malfunctioned in flights 560 and .561. Modified software which

assumes only one wake, and does not use the referenced wake location list, has been used to accommodate

a one-wing-tip smoker situation.

Errors in determining the wake location are monitored to dismiss airplane elements or water reflection

elements detected as wake elements, and to account for regions where the wake information is covered

or missing altogether. To minimize false detection, features that are extracted from the airplane frame

with a width smaller than the estimated wake's width are eliminated. The set of detected wakes differ

by a common uniform shift that reflects the dynamics of the wakes as a function of time. When an

extracted wake location does not differ by that common uniform shift, the extracted location is replaced

by the appropriate reference wake location, after taking into account the general uniform shift for all new

locations relative to the reference wake location list. This exchange process, therefore, accounts [or shifts
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(a) Left (b) Right

Figure 10: Stereo pairs wit,h different wakes orient, at,ions.
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Figure 11: The X-component of the wake location after stereo reduction.

due to wake orientation across the image plane.

4.3 Airplane Extraction

Having separated the wake signal from the airplane signal, and having saved them in two separate files,

the software determines whether the stereo pail" has actually captured the trailing airplane. Tile software

proceeds to determine its location within the image plane only for stereo frames which contain the airplane.

The process estimates the airplane "center-of-mass", its wing span, and its body length. These parameters

determine the airplane's location within the image frame, as illustrated in Fig. 9, and serve to eliminate

false airplane detection, which may occur when the estimated airplane's width is close to the wake's width.

Having determined the airplane location within the image plane, the search process extracts the ap-

proximate location of the airplane's four tips: the two wing-tips, the nose, and the tail, and sets up a

search sub-image around each one, as illustrated in Fig. 9. The search for each tip location is conducted

within its appropriate search sub-image on the thresholded image plane, and not on the separated filtered

airplane signal, to ensure a better tip detection. The search direction for each tip is conducted from the

outside towards the objects. Hence, the search lot the nose tip location is conducted from top to bottom,

whereas the search for the right wing tip is conducted from right to left. A tip location is determined by

the first object element along the search direction that is not an object element in the wake image.
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5 DATA ANALYSIS

5.1 Data Reduction

Although individual attention to each stereo pair could have resulted ill a more accurate stereo data

reduction, there are to() many paired frames for an efficient interactive process. Therefore, stereo data

reduction is conducted sequentially with no interactive interaction. Inaccuracies occur for detected pairs

for which y,. - Yl is too large, I)earin_; in mind the assumption of do = 0. Targeted I)oints fl)r stereo

reduction that are too close to the border of one frame and vanish from the other are eliminated from

further processing. Sinfi]arly, targeted points for stereo reduction that are covered by the time-code bar or

a wake, and can be extracted from only one of the two frames, are also eliminate<l from further processing.

Results are summarized in three files, in a. (',omma Separate(I Value (csv) format, to allow further

analysis, processing, and data manipulation. The first output file contains wake information extra.cted

from the center of each hnage:l)la.ne. Each record of this file contains the video liille, the left an(t right

wake (x,y,z) locations, and their general imaged orientation. An example of such a file is illustrated in

Table l, where LL stands for Left-frame Left-wake, LR for I,efl-frame Right-wake, etc. The second outpu!

file summarizes the trailing aJrplane's stereo data reduction. In addition to the video time, each record

of this file contaills the four airplane-ti t) (x, y, z) locations a.lld their corresponding wake (.r, y, z) locaiiolls

relative to the left image plane, as detailed in Section 4.2. Finally the airplane's stereo data reduction

file contains an estimate for the measured Boeing 7:{7 wing span, which is one of the means by which the

overall accuracy of the reduction process is assessed. Excerl>ts from such a file are illustrated in Tables 2

and 3, for the nose and ]eft wing data reductions, respectively. The structure of these two output files

enables the inspection of false (letection. For example, if one of the four detected Boeing 737 tips (lifters

substantially in depth from the others, or does not belong to the 2D plane formed by the detected tips,

it is a likely false detection. These files also enable easy extraction of additional geometrical information.

such as the wake separation at different image plane locations.

The third file summarizes flight information collected by outside recorders at time references that are

relevant to the analysis of the extracted stereo data. Each record of this file contains the vi<teo time of

the stereo pair, and data collected from (;PS files and camera angle recorders from both the OV-10A and

Boeing 737 airplane as (:lose to the video time as possible. Data from the OV-10A and Boeing 737 (;PS

files include the airplanes' altitude in meters, and the difference in altitude belween the two airplanes in

feet, as illustrated in Table 4. The process accounts for the 10 seconds difference between (;PS time and

actual time. Data extracted from the OV-10A and Boeing 737 orientation files include the (0, O, ¢_') angles
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time

15:42:57+

0.00

0.27

0.53

0.80

1.07

1.33

1.60

1.87

2.13

2.40

2.67

2.93

3.20

3.47

3.73

4.00

4.27

4.53

4.80

5.07

5.33

5.60

5.87

y-location

(pixels)

141

141

141

141

141

141

141

141

141

141

141

141

141

141

190

190

190

190

190

190

190

190

190

Left Wake Location

(feet)

170.689,161.525,685.405

162.670,161.525,685.405

158.088,161.525,685.405

151.352,156.916,665.851

154.690,156.916,665.851

160.255,156.916,665.851

161.220,152.563,647.381

164.466,152.563,647.381

160.027,148.446,629.909

152.745,144.544,613.354

145.570,144.544,613.354

135.318,144.544,613.354

122.863,140.843,597.648

111.875,140.843,597.648

J 06.333,200.033,629.909

92.5247, la5.049,582.726

85.5197,180.542,568.531

82.6690,180.542,568.531

81.7188,180.542,568.531

86.4699, 180.542,568.531

89.3205,180.542,568.531

89.6029,185.049,582.726

85.9041,189.788,597.648

Right Wake Location

(feet,)

LL LR RL RR

(deg) (deg)(deg)(deg)

269.208,161.525,685.405 -89.2 -86.7 -88.6 90.0

274.993,166.412,706.143 -87.5 90.0 89.7 -88.6

268.062,161.525,685.405 89.5 79.5 88.6 81.5

264.866,156.916,665.851 89.6 -82.9 -71.4 -84.3

278.372,161.525,685.405 89.6 90.0 87.8 89.5

282.954,161.525,685.405 89.2 -X8.4 88.4 87.8

278.220,156.916,665.851 89.6 87.1 88.4 86.5

282.672,156.916,665.851 89.5 88.4 88.4 87.3

284.897,156.916,665.851 89.5 88.6 88.4 87._

270.503,152.563,647.381 90.0 87.8 88.9 86.7

252.673,148.446,629.909 -89.2 85.1 89.6 83.9

240.907,144.544,613.354 -88.4 86.7 89.6 87.5

239.882,144.544,613.354 90.0 90.0 90.0 90.0

224.749,140.843,597.648 -89.2 -60.9 56.6 30.1

220.405,194.776,613.354 -88._ 76.0 70.9 45.3

201.775,189.788,597.648 -88.4 -87.1 -89.6 -88.0

191.944,180.542,568.531 -8_.0 -85.9 -89.6 -87.1

186.452,176.248,555.011 -87.1 -86.3 -88.4 -88.0

191.944,180.542,568.531 -87.1 -86.7 -8_.4 -88.0

195.745,180.542,568.531 -86.7 -87.1 -87.5 -88.4

197.645,180.542,568.531 -86.3 -88.0 -87.5 -88.8

196.737,185.049,582.726 -87.8 90.0 -8_.8 89.2

191.867,185.049,582.726 -89.2 -89._ 90.0 89.2

Table 1: Wake information file for flight 558, time window 15:42:57 hours

22



time

15::12:57+
0.00

0.27
0.53

0.80
1.07

1.33

1.60
1.87

2.13
2.40

2.67

2.93

3.20

3.47

3.73

4.00

4.27

4.53

4.8(I

5.07

5.33

5.60

5.87

Nose l_ocation

(feet)

N/A

N/A

N/A

N/A

N/A

N,/A

N,/A

N/A

N/A

N/A

N/A

N,/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

188.463, 0.906074, 542.t20

188.463, 2.71822, 542.120

190.162, 3.71048, 555.011

182.121, 2.71822, 542.120

Left, Wake ¢_ Nose Location

(feel)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

90.6074, 0.906074, 542. 120

90.6074, 2.71822, 542.120

89.0516, 3.71048, 555.(111

80.7030, 2.78286, 555.011

Right Wake +q Nose Location

(feel,)

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

188.463, 0.906074, 5,12.120

187.557, 2.71822, 542.120

184.839, 3.62429, 542.120

189.09.1, 2.85066, 568.531

Table 2: Part of the airplane's data reduction file for flight 558, time window 15:42:57 hours, which shows

the nose 31) location, and the wake location adjacent to lhe nose.
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tinle

15:42:57+

0.00

0.27

0.53

0.80

1.07

1.33

1.60

1.87

2.13

2.40

2.67

2.93

3.20

3.47

3.73

4.00

4.27

4.53

4.SO

5.07

5.33

5.60

5.87

Left Wing Location

(feet)

Left Wake _ Left Wing Location

165.819,

153.645,

148.235,

147.153,

146.340,

154.727,

151.720,

158.974,

156.846,

Left Wake <(_ Left. Wing Location

(feet) (feet)

46.7410, 665.851 267.091, 46.7410,

42.1984, 647.381 257.518, 42.1984,

38.9524, 647.381 264.866, 40.0637,

35.7063, 647.3Sl 257.518, 35.7063,

260.764, 31.3783,

262.929, 25.9683,

262.149, 22.1089,

274.831, 21.6402,

267.413, 25.2673,

264.254, 27.3730,

250.133, 26.6536,

597.648 240.907, 26.6536,

582.726 231.741,23.9732,

582.726 223.750, 24.9721,

201.086,44.2179, 629.909

192.726,39.9804,613.354

196.875,37.9010,629.909

198.980,34.7426,629.909

204.244,30.5314,629.909

211.614,25.2673, 629.909

217.931,22.1089,629.909

218.354,20.5027,613.354

219.379,24.6033,613.354

210.765, 25.9710, 597.648 152.745,

199.659,25.3226, 582.726 140.843,

196.780,25.9710,597.648 131.853,

186.023,23.3747, 582.726 117.847,

179.206,24.3486,582.726 109.082,

30.5314,629.909

25.9683, 647.381

21.5279, 613.354

21.0561, 629.909

24.6033,613.354

26.6536,613.354

25.9710, 597.648

25.9710,

23.3747,

24.3486,

220.405, 33.8295,

202.77,1, 44.949_,

186.651, 53.4583,

190.162, 63.0782,

192.018, 71.426_,

194.800, 7,1.2097,

N/A

N/h

N/A

169.139, 31.3572, 568.531

161.406, 41.7:130, 555.011

161.537, 56.0629, 568.531

155.840, 63.0782, 555.011

155.840, 71.4268, 555.011

159.551, 74.2(197, 555.011

N/A

N/A

N/A

101.290, 32.1402, 582.726

90.9069, 41.7430, 555.011

86.0770, 53.4583, 542.120

83.3588, 61.6130, 542.120

85.3411, 71.4268, 555.011

87.8892, 72.4859, 542.120

N/A

N/A

N/A

665.851

647.381

665.851

647.381

647.381

647.381

629.909

647.381

629.909

629.909

613.354

613.354

597.648

597.648

613.354

597.648

542.120

555.011

555.011

555.011

Table 3: Part of the airplane's data reduction file for flight. 558, time window 15:42:57 hours, which shows

the left, wing 3D location, and tile wake location adjacent to that. wing.
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videotime

15:42:57+
0.00

0.53

1.60
2.67

3.73
,1.53

5.60

GPS time

15:43:07

15:43:0g

15:43:09

15:43:10

15:43:t 1

15:,t3:12

15:43:13

OV t0 altilude

(,,l)

1744 .-1,1

1739.10

1732.74

1725.Sl

1719.07

1714.09

1711.00

B737 altitude

(m)

1542.50

1539.16

153(i.20

1533.5s

1531.51

1530.41

1529.27

difference

(feet)

662.53

655.97

644 .g2

630.69

615.37

602.62

596.22

q ) ,Tal)le 4: The relevant GI S data for flight 558, time window 15:42:57 hours.

that correspon(I 1o tile true heading, roll, and pitch angles of each airplane respectively. (;t)S data is used

to assess the accuracy of the depth exl.raclion, as illustrated in Figs. 15, 16 and 17. Extracled angles are

not incorporated in the current data reduction process.

The data reduction t)rocess is a('companied by graphicaJ tools for visual inspection of the data reduction

process accuracy. Each video pair is illustrated side by side on the console. Results from different stages

of the data reduction process appear on tile screen as appropriate. For examt)le, when the time bar code

is filtered out from each frame, its location is marked on the displayed fl'ame. When the process detects

the airplane, its sub-image location, together with its corresponding tip search sub-areas, are marked on

the displayed frame. All detected stereo pairs, which are candidates for stereo re(luction, are also marked

on the displayed frames, a.s ilhlstra.ted in Fig. 9. (?onsequently, while the process is not interactive, the

detection accuracy can be assessed by insl)e('tion.

The accurac.v of the extracted data is gral)hically compared t.o known features of this experiment. For

example, tile calculated wing span is compared to the known span of the Boeing 737. The nleasured det)lh

between detected 1)oints on the Boeing 737 image and the canleras is compared to the difference in altitude

measured from the GPS files. Finally, tile wakes' x-location relative to the left ca.nmera's image plane

is plotted as a function of lime, assuming a constal,t depth. These visual aids contril)ute to the quality

assurance process and to the frame-by-franm accuracy determination.
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Parallax

error

ill pixels

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Del)th perturbation from true depth of

1000 900 800 700 600 500

in feet

Displacement for true depth of

206.8 164.1 127.1 95.4 68.8 46.9

176.,1 140.4 109.7 82.1 59.3 40.5

147.5 117.7 91.7 69.2 50.1 34.3

120.0 96.0 75.0 56.7 41.2 28.3

93.7 75.2 58.9 44.7 32.5 22.4

68.7 55.3 43.4 33.0 24.1 16.6

44._ 36.1 28.4 21.6 15.8 10.9

21.9 17.7 14.0 10.7 7.8 5.4

1000 900 800 700

in feet

600 ,500

8.1 7.1 6.2 5.3 4.5 3.6

6.9 6.1 5.3 4.6 3.9 3.2

5.8 5.1 4.5 3.9 3.3 2.7

4.7 4.2 3.7 3.2 2.7 2.2

3.7 3.3 2.9 2.5 2.1 1.7

2.7 2.4 2.1 1.8 1.6 1.3

1.7 1.6 1.4 1.2 1.0 0.9

0.9 0.8 0.7 0.6 0.5 0.4

Table 5: Stereo reduction sensitivity 1o inaccurate parallax detection.

5.2 Error Analysis

For a given true depth-value in Det, tile corresponding true parallax in pixels can computed by using Eq. 5.

Adding perturbations to tile calculated parallax, which corresponds to inaccurate tip detection, the same

equation can calculate the depth extraction as a function of the perturbed parallax data. The difference

between the latter and the initial depth denotes the depth perturbation. Depth perturbation as a function

of parallax perturbations, as illustrated in Fig. 12, indicates the sensitivity of depth measurements to

inaccurate tip location detection. Likewise, the same perturbation in the parallax measurement can be

translated into error in the X or Y location extraction, t)y using Eq. 6, as illustrated in Fig. 13. Table 5

summarizes the sensitivity of the data reduction techniques (in feet) to perturbations in parallax data (in

pixels).

As an example, error analysis shows that for a difference in altitude of 500 feel. between the trailing

Boeing 737 and the OV10, an error of -t-2 pixels in detecting the true parallax of any given stereo pair,

corresponds to an error of about +22 feet in the depth extraction and about +2 feet in the extraction of

X. Likewise, for a difference in altitude of 1000 feel between the trailing Boeing 737 and the OV10, an

error of +2 pixels in detecting the true parallax of any given extracted point corresponds to an error of

+94 feet for the depth calculations, and 4 feet for the X placement.
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5.3 Results

The median filter, combined with the masking and thresholding operation, causes at. least 1-2 pixel error

in detecting the airplane tips, i.e., tips are typically extracted 1-2 pixels into the object instead of at their

true edge. The assumption of a general parallax error of two pixels corresponds to about 2-4 feet error

in the X location and 20-100 feet. error in the depth extraction for a range of 500-1000 feet difference in

altitude between the trailing Boeing 737 and the OV10.

Figures 1,1 25 illustrate the extracted data for time windows of 15:17:52, 15:42:57, 16:01:10 and 16:02:11

hours respectively, of flight 558. The 15:17:52 case demonstrates the capture of the trailing aircraft, from a

distance of about 900 feet.. A detection error of only one pixel translates, in this case, to an error in depth

measuremen! of about 36 feet, and an X displacement error of about 2 feet. The 1.5:42:,57 case indicates

that the airplane's nose is out of the frame. Therefore, wakes can be measured only after the encounter,

where the right wake begins to dissipate, is unlocalized and spreads apart. As a consequence, its location

detection is, at times, mixed with the tail information, and some tail-tip extraction is not always accurate.

The 16:01:10 is a case illustrating the OV-10 having a large roll angle. The 16:02:11 case illustrates the

airplane being covered by the time bar code.

Figures 14-17 illustrate the extra.cted depth for time windows of 15:17:52, 15:42:57, 16:01:10 and

16:02:11 hours respectively, of flight 558 for both the airplane and the wakes. A comparison of the two

indicates the nature of the encounter, i.e., whether the airplane was above, below, or crossing the wakes.

The real difference in altitude for the 15:42:.57 hour data. extraction is between 6;50 and 600 feet (Table 4).

Figure 15 shows a consistent error extracting the real depth of about. 20 feet, which, by Table 5 indicates

parallax error of about one pixel. There was no GPS data available for the 15:17:52 hour at the time of

data. reduction, but the depth extraction illustrated in Fig. 14 averages around 8.50 feet. with an error of

50 feet, which also corresponds to a parallax error of no more than a pixel. Extracted depth is not always

smaller than the depth indicated by the GPS data, as demonstrated by Figs. 16 and 17. Inaccuracies are

particularly high for the right wing depth extraction, with an average error of 50 feet, which corresponds

to 2-a pixels for 650 feel (Fig. 16) and 3-5 pixels for ,550 feet (Fig 17). The other tips were detected with a

better accuracy of about -1-20 and -I-30 feet, for Fig. l(J and Fig. 17 respectively. This error corresponds to

a parallax detection error of about a pixel for the first and around two pixels for the second. In the 16:01:10

extraction, the roll angle is at times as high a.s 6.3 °, which might explain part of the observed error. In

the 16:02:11 extraction, part. of the airplane is covered by the time bar code, which causes inaccurate, data.

reduction for the left. and right wings, as observed in Fig. 17.
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Figures11and lS 21 illustratethe extractedwake:r-locationfor timewindowsof 15:42:07,15:17:52,

15:42:57,16:01:10and16:02:11hoursrespectively,in flight55S.With theexceptionif Fig. iS. thesefigures
demonstratethe extraclionof steadyand parallelwakes.Tile perturbationsin Fig. lS are local,and do

notobscuretile generalbehaviorof the wakes.The reductionprocessalsoenabledtile observationof the
sinusoidalbehaviorof thewakesin Figs.11,IS, 19and21.Thesinus<tidalbehavioris, at times,correlated

with a change in the depth measuremenl. The wakes (xo, yo, zo) location is measured relative to the left

camera image plane location, which is set to (xi,yi, O) (Section 2.1). Therefore, wake t>ehavior might I>e

attributed to the OV-10 maneuvering, which shifts the image plane location relative to the wake, an<l

not to the wakes behavior at the l>articular time se<luence. I)epth extraction for the wake is accurate to

parallax detection error of less than a pixel in all cases. (kmsequently, this set of figures demonstrates the

high accuracy of wake detection and stereo reduction.

Figures 22 25 illustrate the extracted wing span for the 15:17:52, 15:.12:57, 16:01:10 and 16:02:11 hours

time windows respectively, in flight 558. These tigures demonstrate a consistent estimate of a wing span

that is up to 10 feet shorter than the true wing span. Tile consistency in the estimate indicates a systematic

error that might stem from a combination of the following: tip location detection error, inaccurate stereo

reduction due to roll angles that are different from zero for the OV-10, and inaccurate estimation of the

deflection angle for the Boeing 737 in flight.. As mentioned before, error detection of 1-2 pixels ill each

wing, corresponds to accumulative detection error of 3-4 pixels, which, in turn, means an X displacement

of 3-5 feet for a true depth of 500 feet., and 6-S feel for a true depth of 1000 feel,, consistent with the

inaccuracy range demonstrated in Figs. 22 25.

6 SUMMARY

This report summarizes the stereo-video data re<luction of wake vortices and an intercepting airl)lane. It

presented the theory of stereo vision, and its implementation as a data reduction tool that extracts the

trailing airl)lane and the wake locations. The extracted results are analyzed with respect to their re<luction

accuracy, an<l the process robustness an<l consistency. As <lemonstrated I)y this report., accurate results

were obtained regardless of the signal-to-noise ratio, the wake/airl>lane orientation and position within

the image [)lane, or the strength of the water-reflectance signal. The data reduction technique is accurate

within a margin of 1-2 pixels, which is a reasonable level given the water reflection signal, and the unknown

calibration factors that might have caused inaccuracies, such a.s the OV-IO roll angle or wing <teflections.

The confl)ination of the data reduction files and the summary gral)hs, such as those illuslrale<l in Figs. 1_1
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25, provides a powerful assessment tool of the processed data, and paves tile way to further analysis and

comparison with theoretical calculations.
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starting at 15:42:57.
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Figure 20: The wakes x-locations, as extracted from the stereo information for flight 55g, time window

starting at 16:01:10.
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Figure 21: The wakes x-locations, as extracted from the stereo information for flight 558, time window

starting at 16:02:11.
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Figure 22: \Ying-st)all estimate extracted from tile distance between the wing lip locations. FliKhl 55s,

time window starting al, 15:17:52.
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Figure 23: Wing-span estimate extracted from the distance l)et.ween the wing lip locations. Flip_;ht 55S,

time window starting a.l 15:.12:57.
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Figure 24: Wing-span estimate extracted from the distance between the wing tip locations. Flight 558,

time window starting at 16:01:10.
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time window starting at 16:02:11.
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